Periodic Solutions of Functional Dynamic Equations with Infinite Delay
نویسندگان
چکیده
In this paper, sufficient criteria are established for the existence of periodic solutions of some functional dynamic equations with infinite delays on time scales, which generalize and incorporate as special cases many known results for differential equations and for difference equations when the time scale is the set of the real numbers or the integers, respectively. The approach is mainly based on the Krasnosel′skĭı fixed point theorem, which has been extensively applied in studying existence problems in differential equations and difference equations but rarely applied in dynamic equations on time scales. This study shows that one can unify such existence studies in the sense of dynamic equations on general time scales.
منابع مشابه
Existence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملEXISTENCE OF PERIODIC SOLUTIONS IN TOTALLY NONLINEAR NEUTRAL DIFFERANCE EQUATIONS WITH VARIABLE DELAY
متن کامل
Bounded and Periodic Solutions of Nonlinear Integro-differential Equations with Infinite Delay
By using the concept of integrable dichotomy, the fixed point theory, functional analysis methods and some new technique of analysis, we obtain new criteria for the existence and uniqueness of bounded and periodic solutions of general and periodic systems of nonlinear integro-differential equations with infinite delay.
متن کاملTotal Stability in Abstract Functional Differential Equations with Infinite Delay
Recently, authors [2] have discussed some equivalent relations for ρ-uniform stabilities of a given equation and those of its limiting equations by using the skew product flow constructed by quasi-processes on a general metric space. In 1992, Murakami and Yoshizawa [6] pointed out that for functional differential equations with infinite delay on a fading memory space B = B((−∞, 0];R) ρ-stabilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006